Liquid metal vapour shielding in linear plasma devices

T.W. Morgan¹, G.G. van Eden¹, P. Rindt², V. Kvon¹, D. U. B. Aussems¹, M.A. van den Berg¹, K. Bystrov¹, N.J. Lopes Cardozo² and M. C. M. van de Sanden¹

¹Dutch Institute for Fundamental Energy Research- DIFFER, Eindhoven, The Netherlands

²Eindhoven University of Technology, The Netherlands

Going from ITER to DEMO involves large jumps in several parameters

Property	ITER	DEMO
Pulse length	~400 s	~7200 s
Duty cycle	<2%	60-70%
Neutron load	0.05 dpa/yr	I-9 dpa/yr
Exhaust power	150 MW	500 MW
Divertor area	~4 m ²	~6 m ²
Radiated power	80%	97%

Resilience to neutrons and power excursions becomes more important

Courtesy G. Matthews

Limiting factors for W in DEMO

Thermal shock/fatigue Big ELMs/VDEs/disruptions

BT, IP

Erosion For 5 mm W lifetime ~2 years¹

Cracking (small ELM-like loading)² Progressive deterioration³ Melting- irreversible damage Runaway failure?

¹Maissonier NF 2007 ²Linke NF 2011 ³Loewenhoff FED 2012

Limiting factors for W in DEMO

Increased brittleness

³Loewenhoff FED 2012

²Linke NF 2011

MOD-PMI | June 2019 | NIFS, Japan | T.W. Morgan

Capillary porous structures (CPSs) create conduction based stabilized PFCs to contain liquid metals

Evtikhin JNM 1999

Replace solid surface with liquid

MHD forces (jxB) destabilize liquids in tokamaks (droplets)

Use surface tension/capillary refilling

Replace top region with this combined material

Benefits of liquid metals for DEMO

Separation of PSI from neutron issue

Material options of Li, Sn both have strengths and weaknesses

Choices once cost, availability, activation etc. taken into account

	Lithium	Tin	
••	Low Z	Higher Z	••
••	High vapour pressure	Lower vapour pressure	•••
•••	High T retention	Lower T retention	• •

Allain and Taylor PoP (2012)

Wesson, Tokamaks (2004)

Linear devices have good flexibility and diagnostic access: good place to investigate vapour shielding

Magnum-PSI/Pilot-PSI good utility for LM study due to DEMO relevant heat/particle loading

ITER/DEMO divertor strikepoint conditions (detached)

van Eck FED (2019)

Vapour shielding: additional loss channels for heat flux (impurity stimulated "detachment")

Solid metal: $q_{plasma} = q_{cond}$ Liquid metal: $q_{plasma} = q_{cond} + q_{evap} + q_{rad} + q_{mass}$

Experiment compared performance of Sn CPS with solid Mo reference targets

lon species	T _e	n _e	q _{ref}
	(eV)	(10 ²⁰ m ⁻³)	(MW m ⁻²)
H or He	0.4-3.1	0.6-7.0	0.47-22

n.b. Deliberately poorly cooled to reach VS temperature regime

Vapour interaction with plasma decouples input power from surface temperature

Poorly cooled Sn samples exposed to power load series in pilot-PSI

Vapour interaction with plasma decouples input power from surface temperature

Poorly cooled Sn samples exposed to power load series in pilot-PSI

Vapour interaction with plasma decouples input power from surface temperature

Poorly cooled Sn samples exposed to power load series in pilot-PSI

Temperature locking when vapour pressure and plasma pressure ~ matches

Overall reduction in power to cooling water of ~one third

Strong recombination occurs due to lowered T_e

Li targets with a reservoir were used to permit long-timescale tests

Component similar to and designed to test design for NSTX-U

Rindt FED 2016

Helium plasma loading to determine power handling limit in VS conditions

Rindt NF (2019)

Similar vapour shielding effect observed for Li as for Sn

High heat load can be sustained (9 MW m⁻² peak heat load)

Sn vapour limit is \sim 1700 $^{\circ}$ C

Prediction for Li is therefore ~700-900 $^{\circ}$ C

Prediction well matched by observation

Analytical description of VS mechanism

Limited by available supply

Lithium energy dissipation through ionization and radiation can be estimated as $\sim 5 \text{ eV}$

Based on lifetime of Li samples R~0.9 is measured

Taking into account energy dissipation via ionization and radiation from non-promptly redeposited Li we get $\epsilon_{cool} \sim 5 \text{ eV}$ for Magnum-PSI experiments

Goldston NME (2017)

A temperature plateau occurs when dissipation via Li becomes dominant.

deposited power

FEM shows good agreement with experiment

Rindt NF (2018)

Benefit for DEMO of vapour shielding

- **Decouples** incoming heat load from surface temperature and reduces cooling requirements
- Maximum **impurity influx ~fixed**
- For Sn adds **protection** for off-normal events: adds **robustness** and is more **forgiving**

• For Li **constant operation** could be possible

Vapour shielding leads to stable power reduction to target over wide P_{input} due to natural negative feedback

Steady state operation with a Li divertor in DEMO can handle very large heat loads

Want to determine potential of LiVS for DEMO

Assume a target with same thermal conductance (C) as ITER monoblocks

For steady state detached conditions tolerable power density dominated by conduction

For e.g. slow transients ϵ_{cool} is larger and can in principle handle very large power densities

Requires strong baffling however (vapour box*) to limit core influx to tolerable levels *Goldston Phys. Scr. (2017)

An LM-coated surface is also very resilient to transient events

Survival without substrate damage is defined only by loss of all LM surface layer

An LM-coated surface is also very resilient to transient events

 $\epsilon_{cool} = 50 \ eV, R = 0.99$

Survival without substrate damage is defined only by loss of all LM surface layer

Divertor can withstand ELMs, VDEs, disruptions

Evaporation temporarily above tolerable load but should be seen as damage mitigation during loss of control events and can tolerate small ELMs

Main challenge is to engineer closed divertor and ensure efficient and effective Li extraction

Conclusions

Strong interactions between impurities and plasma leads to strong cooling and energy loss during high evaporation: vapour shielding

Leads to a natural negative feedback with temperature locking at pressure balance point

Extrapolation to DEMO indicates high heat loads can be tolerated with Li if a vapour box divertor can be successfully engineered

